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Mathematics by Experiment: 
Plausible Reasoning in the 21st Century  

by Jonathan Borwein and David Bailey 
 A. K. Peters 2004, x + 288 pp. 

Experimentation in Mathematics: 
Computational Paths to Discovery  

by Jonathan Borwein, David Bailey, and Roland 
Girgensohn, A. K. Peters 2004, x + 357 pp. 

This reviewer is compelled to admit right off: Perusal of these 
two books reminded me of my own college days at CalTech. You 
see, everything was fresh then, and I speak not merely of youth 
per se. Much of the scientific culture was driven in that era by the 
world view of the eminent physicist Richard Feynman. As brash 
as he was, he was also a pioneer of ideas—and not all of these 
ideas were immediately accepted by the professional community. 
I always thought that Feynman’s life mission was not just to 
throw off the shackles of accepted science, but also to replace the 
past with something new; and from this reviewer’s point of view, 
nothing is more intellectually exciting than that.

These two books, written by pioneers in the field of experimental 
mathematics, have provided us with a crisp snapshot of the state 
of that field at the dawn of this new century. Given that the general 
public embraced computers as “number-crunching” engines—and 
little more—for the first several decades of computing, it is 
really, now, in the early 2000s about time for computers to weld 
solidly to pure mathematics. These marvelous books underscore 
this revolution (there have been at least four computer revolutions 
by now; this reviewer is claiming experimental mathematics is 
yet another one), and such books absolutely have to be written, 
and read. This is the Feynmanesque excitement, then: Everything 
in this experimental field is fresh right now; moreover, the 
computational past is not merely being rejected, it is—at least in 
part—being replaced. 

For readers who are not familiar with the historical and technical 
nuances of the phrase “experimental mathematics,” a word 

here is appropriate. In the first 
book, the authors give a detailed 

definition which I paraphrase for 
brevity here: 

“Experimental Mathematics is that branch of mathematics that 
concerns itself ultimately with...insights...through the use of 
experimental...exploration...” 

The details omitted here give the authors’ defining paragraph a 
philosophical bent; but for many readers their simpler, introduc-
tory definition 

“This new approach to mathematics—the utilization of advanced 
computing technology in mathematical research—is often called 
experimental mathematics.” 

should suffice. Though it could be argued that experimental 
mathematicians have been around virtually forever (Gauss him-
self is certainly a candidate for the moniker), the modern era of 
experimental mathematics can be said to have begun in the early 
1990s. The year 1992 saw the advent of the journal Experimental 
Mathematics, and one of the canonical anecdotes of the field was 
the 1993 numerical discovery by Enrico Au-Yeung—a student at 
U. Waterloo—that 
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in the sense that equality holds here to at least six significant deci-
mals. One reads that it came to the attention of Borwein, Bailey, 
and Girgensohn that Au-Yeung’s relation even held to 30 and 
later to 100 decimals, and eventually the relation was rigorously 
proved. This development in the experimental arena is especially 
refreshing in that here in the 2000s, there are extra reasons to take 
numerical work into the realms of extreme precision, thus leaking 
bright light once and for all into the “number-crunching” limbo 
of history. 

by Richard E. Crandall 
Reed College
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Beyond such sparkling anecdotes, the books lead us through a 
forest of these experimental conjectures, and in many cases proofs 
of same. There are polylogarithmic discoveries in connection 
with knot theory and particle physics, problems from probability 
and statistics, and much more. It should be stressed that many 
identities remain unproven, even though they hold to thousands 
of decimals. 

The books go well beyond just identity-finding and subsequent 
proving. There are discussions of fast arithmetic per se, Fourier 
transforms, normal numbers and digit expansions generally, some 
number theory, entropy principles, and on and on. There is—as 
expected, given the historical backgrounds of the authors—a 
lot about the number π, including the celebrated Bailey–Bor-
wein–Plouffe formula that has led computationalists to know that 
the quadrillionth binary bit of π is a zero. This “BBP” formula 
has also led to some theorems and expectations on how normality 
proofs might go, in future, for certain fundamental constants. One 
important component of the books is the discussion of PSLQ, 
worked out by sculptor-mathematician Helaman Ferguson, as 
a computational scheme for finding linear relations of the form  

r x r xn n1 1 0+ + =

where the xk are known each to say hundreds or thousands of dig-
its, and the PSLQ system finds integer coefficients rk, or rules out 
the existence of the same, within norm limits on said coefficients. 
For example, the left-hand side of Au-Yeung’s formula above 
could be x1, to say 300 digits, and x2 could be π4 (or ζ(4)) also 
to high precision, and PSLQ will report the Au-Yeung identity 
itself. This is not the same as proving, of course, but this reviewer 
believes that by today, 2006, the PSLQ relation-detection system 
has inspired about as many proofs as a good career teacher can 
inspire in a lifetime. And that should not be disturbing, for PSLQ 
is after all a human invention. 

This reviewer wishes to convey a more personal anecdote in 
connection with these fine books. While perusing these books 
occasionally over several months, a problem concerning the 
Riemann zeta function at extreme imaginary height occupied my 
thoughts, and at one point I was about to give up because a certain 
expansion seemed not to have effectively boundable coefficients. 
Then by leafing serendipitously once again through these books, I 
realized the Lambert W-function was the creature at hand. What is 
more, the theory and examples and problems posed by the authors 
for this W amounted to a prefabricated tour of what I had to get 
through to solve my own problem! This little experience all by 
itself made the books precious to me. 

One supposes a believable review must mention some drawbacks 
or imperfections, yet there are only minor ones in these books. 
The index (of each volume) could be perhaps significantly more 
dense. But the only real complaint this reviewer has is that he 
wishes there were just one 600-page book, because I need to take 
the books around often enough, and it is awkward to travel with a 
two-piece “experimental bible.” 

In closing, back once more to Feynman and his world view: 

“The worthwhile problems are the ones you can really solve or 
help solve, the ones you can really contribute something to.” 

-Richard Feynman, 1966 

 
So, in these volumes, the brave pioneers Borwein, Bailey, and 
Girgensohn have not only chosen worthwhile problems, in 
Feynman’s sense of accessibility, but also shown us the pathways 
that will allow many of us readers to select worthwhile problems 
in the sense of personal achievement. These are two beautiful 
books, both of which belonging squarely on the desk of any aspir-
ing discoverer, or—might I say it?—on the shelf of any historian 
of science. 

I do present you with a man of mine,

 Cunning in music and in mathematics,

 To instruct her fully in those sciences,

 Whereof, I know, she is not ignorant.

 

William Shakespeare, Taming of the Shrew, 
Act 2, Sc.1.

Music and poesy used to quicken you:

 The mathematics, and the metaphysics,

 Fall to them as you find yur stomach serves 
you.

 No profit grows, where is no pleasure 
ta’en:--

 In brief, sir, study what you most affect.

 William Shakespeare, 
Taming of the Shrew, Act 1, Sc.1.




